The realization space is [1 1 0 0 1 1 0 x1^2 - x1 x1 - 1 x1 x1^2 - x1 + 1] [1 0 1 0 1 0 x1 x1^3 x1^2 x1^2 x1^3] [0 0 0 1 1 1 x1 - 1 x1^3 - 2*x1^2 + 2*x1 - 1 x1^2 - x1 x1^2 - x1 + 1 x1^3 - x1^2 + x1] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (-x1^11 + 6*x1^10 - 19*x1^9 + 40*x1^8 - 59*x1^7 + 62*x1^6 - 46*x1^5 + 23*x1^4 - 7*x1^3 + x1^2) avoiding the zero loci of the polynomials RingElem[x1 - 1, x1, x1^3 - x1^2 + 2*x1 - 1, x1^2 - x1 + 1, x1^4 - x1^3 + 2*x1^2 - 2*x1 + 1, 2*x1^3 - 2*x1^2 + 2*x1 - 1, x1^2 + 1, 2*x1^2 - 2*x1 + 1, 2*x1 - 1]